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Introduction: Los Angeles is the most differentiated of the shergottite-nakhlite-chassignite (SNC) group, but it
also exhibits compositional and textural similarities to other basaltic Martian meteorites (e.g., Shergotty and
QUE94201), and the lunar mare meteorite Asuka 881757 [1-6]. The texture of Los Angeles is that of
microgabbro and it is dominated by relatively large (0.5-2.0 mm) anhedral to subhedral grains of pyroxene and
generally subhedral to euhedral shocked plagioclase (maskelynite). Minor, late-stage phases of particular
interest are, (i) subhedral titanomagnetite and ilmenite grains, (ii) olivine, (iii) olivine+pyroxene-dominated
symplectites, (iv) pyrrhotite, (v) phosphate(s), and (vi) alkali-rich feldspathic glass closely associated with 50-100
Fm subhedral to euhedral SiO2 grains [1-5, 7]. These late-stage textural features and phases seem to be
common in Los Angeles, Shergotty, and QUE94201 [8, 9]. [1-5] previously argued that the symplectites consist
of the assemblage hedenbergite+fayalite+silica, which they inferred to result from the breakdown of single-phase
pyroxferroite, a pyroxenoid of (Ca0.13-0.15Mg0.02-0.00Mn0.02-0.00Fe0.83-0.85)SiO3 composition [11-13]. Implicit in the
pyroxferroite breakdown model is the notion that the bulk of crystallization had to take place at $1.0 GPa and
950 EC [12, 14] with subsequent emplacement and slow cooling on or near the surface of the planet where
single-phase pyroxferroite broke down to hedenbergite+fayalite+silica:
14Ca2/7Fe12/7Si2O6=4CaFeSi2O6+10Fe2SiO4+10SiO2. [8] considered the symplectites to be the breakdown
product of a Ca-poor and Fe-rich pyroxene or pyroxenoid to Fe-rich olivine+augite+silica whereas [9] appear to
favor the pyroxferroite breakdown model. An alternative reaction, that takes place throughout a range of
pressure conditions, could have been the transformation of a pyroxenoid to pyroxene in the presence of already
existing Fe-rich olivine and silica [12, 14]. But in the case of Los Angeles this requirement is not likely met.
Nonetheless, a pyroxenoid breakdown model has to take into account the interplay between the magnesium
content and temperature, and to a lesser extent pressure [12-15]. The breakdown reaction of a low-Ca pyroxene
is perhaps a more viable mechanism provided that, (i) the symplectites have a pyroxene-like stoichiometry, (ii)
the augite and olivine in the symplectites have the appropriate compositions and a silica phase is present, and
(iii) the symplectites were not modified by the shock or by interaction with shock-related phases. Mass balance
considerations also suggest that the breakdown of a low-Ca pyroxene or pyroxenoid produces significantly
greater amounts of silica and Fe-rich olivine than augite. Thus, Fe-olivine and silica should dominate X-ray
compositional maps or diffraction spectra of the symplectites. Although the crystal shape of the most euhedral
SiO2 grains in LA resembles that of tridymite and compositional data also suggest a low-pressure polymorph with
sufficiently open structure to accommodate aluminum, alkalies, and other elements in trace quantities, the SiO2

grains appear to be the loci of expansion cracks that propagate through the neighboring grains. Conceivably,
shock pressure may have transformed the original SiO2 phase into a high-pressure polymorph that expanded
upon relaxation, possibly stishovite or a post-stishovite phase as it has been argued to have happened in
Shergotty [16, 17]. The similarity between the SiO2 grains in LA and Shergotty is intriguing and, considering
among other things their similar within error crystallization and ejection ages, it hints to a possible genetic link. 
Methods and Materials: In this study we concentrated on (1) the olivine+pyroxene-dominated symplectites, (2)
the alkali- and silica-rich glasses, and (3) the SiO2 grains. For that purpose we used the X26A beamline to collect
XRD and XRF spectra of selected single phases and mineral assemblages.
Results: The presence of SiO2 is equivocal in the olivine+pyroxene-dominated symplectites we studied. First,
the XRD patterns of several symplectites do not contain peaks unique to either a low or high pressure SiO2

polymorph. The peaks can be easily assigned to Fe-rich olivine and augite. Peaks characteristic of hedenbergite
(CaFeSi2O6) are also absent. Second, many of the detailed Si X-ray maps of different symplectite areas in the
samples suggest complete absence of silica or a silica-rich phase. But also others suggest that a phase enriched
in silica, relative to olivine and augite, or perhaps silica is probably present. Conceivably, the symplectites may
have been affected by the alkali- and silica-rich glass produced by the impact event (see below) and/or the
shocked plagioclase. Because, we observe vermicular intergrowths of olivine+glass, olivine+augite±glass, and
olivine+maskelynite. The alkali-and silica-rich phase in Los Angeles is inferred to have been liquid/glass
because it does not appear to have a mineral stoichiometry. Although XRD of a 10x14 mm spot within a 200 µm
area suggests a mostly amorphous material with weak feldspar and no silica polymorph peaks, the
compositional data suggest that these glasses are a mixture of an alkali- (Na, K, Rb) and a silica-rich phase(s)
with contributions from the adjacent shocked silicate and oxide minerals. This conclusion is consistent with the
positive Eu anomaly observed in these glasses by [18]. These glasses also have a Br content of 19.5±2.5 ppm
that is identical to the estimated average Br content of ~20 ppm of the Martian surface [19]. We preclude Br



contamination of the samples during preparation; moreover, Br analyses of an adjacent shocked feldspar grain
are clearly different (0.8 ppm). Therefore, we conclude that these glasses may be an impact shock-produced
feature. Nevertheless, it is unclear whether the alkali-rich phase was originally, (i) an alkali-rich silicate glass, (ii)
an alkali-rich feldspar, or (iii) alkali-rich plagioclase feldspar rims. [10] observed similar features in their study of
Shergotty and Zagami, and they concluded that they may represent shocked mixtures of alkali-feldspars and
silica.
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